Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadj5474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427740

RESUMO

The surficial cycling of Mg is coupled with the global carbon cycle, a predominant control of Earth's climate. However, how Earth's surficial Mg cycle evolved with time has been elusive. Magnesium isotope signatures of seawater (δ26Mgsw) track the surficial Mg cycle, which could provide crucial information on the carbon cycle in Earth's history. Here, we present a reconstruction of δ26Mgsw evolution over the past 2 billion years using marine halite fluid inclusions and sedimentary dolostones. The data show that δ26Mgsw decreased, with fluctuations, by about 1.4‰ from the Paleoproterozoic to the present time. Mass balance calculations based on this δ26Mgsw record reveal a long-term decline in net dolostone burial (NDB) over the past 2 billion years, due to the decrease in dolomitization in the oceans and the increase in dolostone weathering on the continents. This underlines a previously underappreciated connection between the weathering-burial cycle of dolostone and the Earth's climate on geologic timescales.

2.
Sci Rep ; 13(1): 19687, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952059

RESUMO

The study of carbonate rocks is primarily reliant on microfacies analysis, which is strongly based on the comparison with modern allochem assemblages. Despite the existence of several models aimed at comprehensively explaining, on the bases of abiotic factors, the distribution of carbonate-producing organisms, a global, quantitative and standardized overview of the composition of shallow-water carbonate sediments is still missing. Aiming to address this gap in knowledge, the current study provides a global database of the available quantitative data on neritic carbonate sediments. This is paired with satellite-based observations for the abiotic parameters. The results highlight a non-linear, multi-variable, dependence in the distribution of allochems and suggest that depth, temperature, and trophic state are, to a certain extent, interchangeable. The implication of which is a level of non-uniqueness for paleoenvironmental interpretation. The resulting distribution is rather continuous and stretches along an energy gradient. A gradient extending from solar energy, with autotrophs and symbiont-bearing organisms to chemical energy with heterotrophs. Further, quantitative data from modern oceans are still required to disentangle the remaining elements of uncertainty.

3.
Sci Rep ; 12(1): 15970, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153366

RESUMO

The oceans play a major role in the earth's climate by regulating atmospheric CO2. While oceanic primary productivity and organic carbon burial sequesters CO2 from the atmosphere, precipitation of CaCO3 in the sea returns CO2 to the atmosphere. Abiotic CaCO3 precipitation in the form of aragonite is potentially an important feedback mechanism for the global carbon cycle, but this process has not been fully quantified. In a sediment-trap study conducted in the southeastern Mediterranean Sea, one of the fastest warming and most oligotrophic regions in the ocean, we quantify for the first time the flux of inorganic aragonite in the water column. We show that this process is kinetically induced by the warming of surface water and prolonged stratification resulting in a high aragonite saturation state (ΩAr ≥ 4). Based on these relations, we estimate that abiotic aragonite calcification may account for 15 ± 3% of the previously reported CO2 efflux from the sea surface to the atmosphere in the southeastern Mediterranean. Modelled predictions of sea surface temperature and ΩAr suggest that this process may weaken in the future ocean, resulting in increased alkalinity and buffering capacity of atmospheric CO2.


Assuntos
Dióxido de Carbono , Água do Mar , Atmosfera , Carbonato de Cálcio/análise , Carbono/análise , Dióxido de Carbono/análise , Mar Mediterrâneo , Oceanos e Mares , Água
4.
Depos Rec ; 7(2): 256-270, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34413980

RESUMO

The Eastern and Western Mediterranean are separated by an elevated plateau that regulates water exchange between these two basins. The Maltese archipelago, situated atop this topographic high, offers a unique window into the evolution of this plateau in the lead up to the Messinian Salinity Crisis. The Upper Coralline Limestone Formation was deposited between the late Tortonian and the early Messinian and was probably terminated by palaeoceanographic events related to the Messinian Salinity Crisis. It represents the youngest Miocene sedimentary deposits outcropping in the Maltese archipelago. This shallow-water carbonate unit can be used to trace palaeoenvironmental changes atop the sill between the Eastern and Western Mediterranean and to explain the possible water flow restrictions to the Eastern Mediterranean that could have preceded the Messinian Salinity Crisis. Here field surveys, and analysis of the depositional environment within the Upper Coralline Limestone in Malta, are combined with recently acquired multichannel seismic reflection profiles between Malta and Gozo, to reconstruct the depositional sequence in the Malta Plateau during the late Miocene. The Upper Coralline Limestone consists of multiple coralline and larger benthic foraminifera dominated facies, extending from subtidal to intertidal environments. These accumulated in two depositional cycles observed in both outcrop and seismic reflection data. Each cycle exhibits an early aggradation-progradation phase followed by a progradation phase and a final aggradation phase. These manifest themselves in the outcrops as shallowing and deepening upwards phases. These were deposited above a deep water unit and are indicative of a preceding uplift phase followed by filling of the accommodation space through the deposition of the Upper Coralline Limestone Formation in shallow marine depths. The presence of this highly elevated sill during the late Miocene could have restricted circulation to the eastern basin.

5.
PeerJ ; 8: e9355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612887

RESUMO

Climate, which sets broad limits for migrating species, is considered a key filter to species migration between contrasting marine environments. The Southeast Mediterranean Sea (SEMS) is one of the regions where ocean temperatures are rising the fastest under recent climate change. Also, it is the most vulnerable marine region to species introductions. Here, we explore the factors which enabled the colonization of the endemic Red Sea octocoral Melithaea erythraea (Ehrenberg, 1834) along the SEMS coast, using sclerite oxygen and carbon stable isotope composition (δ 18OSC and δ 13CSC), morphology, and crystallography. The unique conditions presented by the SEMS include a greater temperature range (∼15 °C) and ultra-oligotrophy, and these are reflected by the lower δ 13CSCvalues. This is indicative of a larger metabolic carbon intake during calcification, as well as an increase in crystal size, a decrease of octocoral wart density and thickness of the migrating octocoral sclerites compared to the Red Sea samples. This suggests increased stress conditions, affecting sclerite deposition of the SEMS migrating octocoral. The δ 18Osc range of the migrating M. erythraea indicates a preference for warm water sclerite deposition, similar to the native depositional temperature range of 21-28 °C. These findings are associated with the observed increase of minimum temperatures in winter for this region, at a rate of 0.35 ± 0.27 °C decade-1 over the last 30 years, and thus the region is becoming more hospitable to the Indo-Pacific M. erythraea. This study shows a clear case study of "tropicalization" of the Mediterranean Sea due to recent warming.

6.
Data Brief ; 27: 104666, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31700961

RESUMO

This data article describes data of magnetic stratigraphy and anisotropy of isothermal remanent magnetization (AIRM) from "Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system" [1]. Acquisition of isothermal magnetization on pilot samples and anisotropy of isothermal remanent magnetization are reported as raw data; magnetostratigraphic data are reported as characteristic magnetization (ChRM).

7.
PLoS One ; 14(7): e0220390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365545

RESUMO

Here we explore the carbon and oxygen isotope compositions of the co-existing carbonate and phosphate fractions of fish tooth enameloid as a tool to reconstruct past aquatic fish environments and harvesting grounds. The enameloid oxygen isotope compositions of the phosphate fraction (δ18OPO4) vary by as much as ~4‰ for migratory marine fish such as gilthead seabream (Sparus aurata), predominantly reflecting the different saline habitats it occupies during its life cycle. The offset in enameloid Δ18OCO3-PO4 values of modern marine Sparidae and freshwater Cyprinidae from the Southeast Mediterranean region vary between 8.1 and 11.0‰, similar to values reported for modern sharks. The mean δ13C of modern adult S. aurata and Cyprinus carpio teeth of 0.1±0.4‰ and -6.1±0.7‰, respectively, mainly reflect the difference in δ13C of dissolved inorganic carbon (DIC) of the ambient water and dietary carbon sources. The enameloid Δ18OCO3-PO4 and δ13C values of ancient S. aurata (Holocene) and fossil Luciobarbus sp. (Cyprinidae; mid Pleistocene) teeth agree well with those of modern specimens, implying little diagenetic alteration of these tooth samples. Paired δ18OPO4-δ13C data from ancient S. aurata teeth indicate that hypersaline water bodies formed in the Levant region during the Late Holocene from typical Mediterranean coastal water with high evaporation rates and limited carbon input from terrestrial sources. Sparid tooth stable isotopes further suggest that coastal lagoons in the Eastern Mediterranean had already formed by the Early Holocene and were influenced by terrestrial carbon sources. Overall, combined enameloid oxygen and carbon isotope analysis of fish teeth is a powerful tool to infer the hydrologic evolution of aquatic environments and assess past fishing grounds of human populations in antiquity.


Assuntos
Carbonatos/química , Fósseis , Fosfatos/química , Dente/química , Animais , Evolução Biológica , Carbono/análise , Carbono/metabolismo , Isótopos de Carbono/análise , Carpas/metabolismo , Ecossistema , Região do Mediterrâneo , Oxigênio/análise , Oxigênio/metabolismo , Isótopos de Oxigênio/análise , Dourada/metabolismo , Tubarões/metabolismo
8.
Sci Rep ; 9(1): 8842, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222018

RESUMO

The Tethys Ocean was compartmentalized into the Mediterranean Sea and Indian Ocean during the early Miocene, yet the exact nature and timing of this disconnection are not well understood. Here we present two new neodymium isotope records from isolated carbonate platforms on both sides of the closing seaway, Malta (outcrop sampling) and the Maldives (IODP Site U1468), to constrain the evolution of past water mass exchange between the present day Mediterranean Sea and Indian Ocean via the Mesopotamian Seaway. Combining these data with box modeling results indicates that water mass exchange was reduced by ~90% in a first step at ca. 20 Ma. The terminal closure of the seaway then coincided with the sea level drop caused by the onset of permanent glaciation of Antarctica at ca. 13.8 Ma. The termination of meridional water mass exchange through the Tethyan Seaway resulted in a global reorganization of currents, paved the way to the development of upwelling in the Arabian Sea and possibly led to a strengthening of South Asian Monsoon.

9.
Sci Rep ; 6: 29838, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436574

RESUMO

The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...